Publications by authors named "M Wolman"

The acoustic startle response is an evolutionarily conserved avoidance behavior. Disruptions in startle behavior, particularly startle magnitude, are a hallmark of several human neurological disorders. While the neural circuitry underlying startle behavior has been studied extensively, the repertoire of genes and genetic pathways that regulate this locomotor behavior has not been explored using an unbiased genetic approach.

View Article and Find Full Text PDF

To support cell survival, mitochondria must balance energy production with oxidative stress. Inner ear hair cells are particularly vulnerable to oxidative stress; thus require tight mitochondrial regulation. We identified a novel molecular regulator of the hair cells' mitochondria and survival: Pregnancy-associated plasma protein-aa (Pappaa).

View Article and Find Full Text PDF

Aquatic herbicides are used worldwide to eradicate nuisance and invasive plants despite limited knowledge of their toxicity to non-target organisms. 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common active ingredient in commercial herbicide formulations, which triggers plant cell death by mimicking the plant-specific hormone auxin. Application practices of 2,4-D commercial herbicides typically coincide with yearly freshwater fish spawning periods.

View Article and Find Full Text PDF

The sensory modalities used by predatory fish to detect and capture prey are a key dimension of their foraging strategy. Determining the sensory cues that guide predation can also further conservation efforts under environmental change, and address the welfare of research animals. Here, we experimentally manipulated the sensory modalities used by adult zebrafish (Danio rerio) when foraging for larval conspecifics in captivity.

View Article and Find Full Text PDF

Down syndrome cell adhesion molecules (DSCAMs) are broadly expressed in nervous systems and play conserved roles in programmed cell death, neuronal migration, axon guidance, neurite branching and spacing, and synaptic targeting. However, DSCAMs appear to have distinct functions in different vertebrate animals, and little is known about their functions outside the retina. We leveraged the genetic tractability and optical accessibility of larval zebrafish to investigate the expression and function of a DSCAM family member, dscamb.

View Article and Find Full Text PDF