The accumulation of senescent cells, a hallmark of aging and age-related diseases, is also considered as a side effect of anticancer therapies, promoting drug resistance and leading to treatment failure. The use of senolytics, selective inducers of cell death in senescent cells, is a promising pharmacological antiaging and anticancer approach. However, more studies are needed to overcome the limitations of first-generation senolytics by the design of targeted senolytics and nanosenolytics and the validation of their usefulness in biological systems.
View Article and Find Full Text PDFMitochondria are considered as promising targets for cancer treatment. In the present study, triphenyl phosphonium cationic group-conjugated fisetin (mito-fisetin) was synthesized, and its anticancer activity was investigated in several cellular models of estrogen receptor (ER)-positive breast cancer in vitro and in vivo in proliferating and tamoxifen-promoted senescent states. Mito-fisetin, when used at low micromolar concentrations, stimulated the dissipation of mitochondrial membrane potential and oxidative stress, and affected mitochondrial function, resulting in apoptosis induction in senescent breast cancer cells.
View Article and Find Full Text PDFFingerprints are created by elevations and depressions on the fingertip pads. Each person has their own unique fingerprints, which can be used in the identification of that individual when alive, during the immediate postmortem period, or even after the digits have become mummified. Mummification can occur naturally; it can be partial (such as localized to only the hands and feet), extensive, or complete.
View Article and Find Full Text PDFPlant-derived polyphenols are bioactive compounds with potential health-promoting properties including antioxidant, anti-inflammatory, and anticancer activity. However, their beneficial effects and biomedical applications may be limited due to their low bioavailability. In the present study, we have considered a microencapsulation-based drug delivery system to investigate the anticancer effects of polyphenol-rich (apigenin, caffeic acid, and luteolin) fractions, extracted from a cereal crop pearl millet (), using three phenotypically different cellular models of breast cancer in vitro, namely triple negative HCC1806, ER-positive HCC1428, and HER2-positive AU565 cells.
View Article and Find Full Text PDF