Publications by authors named "M Witkin"

Mutations in the pioneer transcription factor FOXA1 are a hallmark of estrogen receptor-positive (ER) breast cancers. Examining FOXA1 in ∼5,000 breast cancer patients identifies several hotspot mutations in the Wing2 region and a breast cancer-specific mutation SY242CS, located in the third β strand. Using a clinico-genomically curated cohort, together with breast cancer models, we find that FOXA1 mutations associate with a lower response to aromatase inhibitors.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by interstitial remodeling and pulmonary dysfunction. The etiology of IPF is not completely understood but involves pathologic inflammation and subsequent failure to resolve fibrosis in response to epithelial injury. Treatments for IPF are limited to anti-inflammatory and immunomodulatory agents, which are only partially effective.

View Article and Find Full Text PDF

Mutations in ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, are the most common alterations of the SWI/SNF complex in estrogen-receptor-positive (ER) breast cancer. We identify that ARID1A inactivating mutations are present at a high frequency in advanced endocrine-resistant ER breast cancer. An epigenome CRISPR-CAS9 knockout (KO) screen identifies ARID1A as the top candidate whose loss determines resistance to the ER degrader fulvestrant.

View Article and Find Full Text PDF

TGFβ is an important tumor suppressor in pancreatic ductal adenocarcinoma (PDA), yet inactivation of TGFβ pathway components occurs in only half of PDA cases. TGFβ cooperates with oncogenic RAS signaling to trigger epithelial-to-mesenchymal transition (EMT) in premalignant pancreatic epithelial progenitors, which is coupled to apoptosis owing to an imbalance of SOX4 and KLF5 transcription factors. We report that PDAs that develop with the TGFβ pathway intact avert this apoptotic effect via ID1.

View Article and Find Full Text PDF

Transcriptional regulators, including the cohesin complex member STAG2, are recurrently mutated in cancer. The role of STAG2 in gene regulation, hematopoiesis, and tumor suppression remains unresolved. We show that Stag2 deletion in hematopoietic stem and progenitor cells (HSPCs) results in altered hematopoietic function, increased self-renewal, and impaired differentiation.

View Article and Find Full Text PDF