Since the first confirmation of quantum monodromy in NCNCS (B. P. Winnewisser , Report No.
View Article and Find Full Text PDFThe recent analysis of the composition of the frozen surface of comet 67P/Churyumov-Gerasimenko has revealed a significant number of complex organic molecules. Methyl isocyanate (CHNCO) is one of the more abundant species detected on the comet surface. In this work we report extensive characterization of its rotational spectrum resulting in a list of 1269 confidently assigned laboratory lines and its detection in space towards the Orion clouds where 399 lines of the molecule have been unambiguously identified.
View Article and Find Full Text PDFQuantum monodromy has a dramatic and defining impact on all those physical properties of chain-molecules that depend on a large-amplitude bending coordinate, including in particular the distribution of the ro-vibrational energy levels. As revealed by its pure rotational (a-type) spectrum [B. P.
View Article and Find Full Text PDFThe high resolution Fourier transform spectrum of the chemically challenging sulfur dicyanide, S(CN)2, molecule was recorded at the far-infrared beamline of the synchrotron at the Canadian Light Source. The spectrum covered 50-350 cm(-1), and transitions in three fundamentals, ν4, ν7, and ν8, as well as in the hot-band sequence (n + 1)ν4 - nν4, n = 1-4, have been assigned and measured. Global analysis of over 21,300 pure rotation and rotation vibration transitions allowed determination of precise energies for 12 of the lowest vibrationally excited states of S(CN)2, including the five lowest fundamentals.
View Article and Find Full Text PDFThe pure rotation spectrum of deuterated cyanamide was recorded at frequencies from 118 to 649 GHz, which was complemented by measurement of its high-resolution rotation-vibration spectrum at 8-350 cm(-1). For D2NCN the analysis revealed considerable perturbations between the lowest Ka rotational energy levels in the 0(+) and 0(-) substates of the lowest inversion doublet. The final data set for D2NCN exceeded 3000 measured transitions and was successfully fitted with a Hamiltonian accounting for the 0(+) ↔ 0(-) coupling.
View Article and Find Full Text PDF