Publications by authors named "M Wilmking"

Widespread insect losses are a critical global problem. Mitigating this problem requires identifying the principal drivers across different taxa and determining which insects are covered by protected areas. However, doing so is hindered by missing information on most species owing to extremely high insect diversity and difficulties in morphological identification.

View Article and Find Full Text PDF

With ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree-ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species-dependent and less well-known for more temperate tree species.

View Article and Find Full Text PDF

Mitigating ongoing losses of insects and their key functions (e.g. pollination) requires tracking large-scale and long-term community changes.

View Article and Find Full Text PDF
Article Synopsis
  • The future performance of European beech trees is uncertain due to their sensitivity to drought, and there is limited understanding of how climate change impacts their drought vulnerability across different regions.
  • The study uses a drought index to analyze how drought sensitivity of beech’s secondary growth varies over time, revealing that sensitivity is higher in dry environments and can be influenced by climatic conditions as well as tree competition within forests.
  • Results indicate that during severe droughts, beech growth may become less connected to climatic factors, suggesting a potential decline in drought tolerance and highlighting the complexity of the species' response to climate change.
View Article and Find Full Text PDF

Forests are critical in the terrestrial carbon cycle, and the knowledge of their response to ongoing climate change will be crucial for determining future carbon fluxes and climate trajectories. In areas with contrasting seasons, trees form discrete annual rings that can be assigned to calendar years, allowing to extract valuable information about how trees respond to the environment. The anatomical structure of wood provides highly-resolved information about the reaction and adaptation of trees to climate.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session694e9j6ge7ae4vog0k6omfegl80tm1q7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once