Publications by authors named "M Wilhelmi"

Treatment of severely injured patients represents a major challenge, in part due to the unpredictable risk of major adverse events, including death. Preemptive personalized treatment aimed at preventing these events is a crucial objective of patient management; however, the currently available scoring systems provide only moderate guidance. Biomarkers from proteomics/peptidomics studies hold promise for improving the current situation, ultimately enabling precision medicine based on individual molecular profiles.

View Article and Find Full Text PDF

Background: The generation and perfusion of complex vascularized tissues in vitro requires sophisticated perfusion techniques. For multiscale arteriovenous networks, not only the arterial, but also the venous, biomechanical and biochemical conditions that physiologically exist in the human body must be accurately emulated. For this, we here present a modular arteriovenous perfusion system for the in vitro culture of a multi-scale bioartificial vascular network.

View Article and Find Full Text PDF
Article Synopsis
  • Adaptation to abiotic stress, like salinity, is crucial for the survival of perennial trees, as it impacts their growth and productivity.
  • The study focused on Populus tremula x alba, where researchers used laser capture microdissection to analyze the effects of salinity on specific leaf cells, revealing intricate molecular responses.
  • Results indicated that salinity triggers protein and metabolite changes in vascular cells, affecting nitrogen metabolism and driving the accumulation of essential storage proteins, highlighting the role of photorespiration in helping trees adapt to stress.
View Article and Find Full Text PDF

With fibrin-based vascular prostheses, vascular tissue engineering offers a promising approach for the fabrication of biologically active regenerative vascular grafts. As a potentially autologous biomaterial, fibrin exhibits excellent hemo- and biocompatibility. However, the major problem in the use of fibrin constructs in vascular tissue engineering, which has so far prevented their widespread clinical application, is the insufficient biomechanical stability of unprocessed fibrin matrices.

View Article and Find Full Text PDF

The arrangement of charged segments in triblock copolymer micelles affects the gene delivery potential of polymeric micelles and can increase the level of gene expression when an anionic segment is incorporated in the outer shell. Triblock copolymers were synthesized by RAFT polymerzation with narrow molar mass distributions and assembled into micelles with a hydrophobic core from poly(-butyl acrylate). The ionic shell contained either (i) an anionic segment followed by a cationic segment ( micelles) or (ii) a cationic block followed by an anionic block ( micelles).

View Article and Find Full Text PDF