Publications by authors named "M Wiendels"

Human heart tissues grown as three-dimensional spheroids and consisting of different cardiac cell types derived from pluripotent stem cells (hiPSCs) recapitulate aspects of human physiology better than standard two-dimensional models in vitro. They typically consist of less than 5000 cells and are used to measure contraction kinetics although not contraction force. By contrast, engineered heart tissues (EHTs) formed around two flexible pillars, can measure contraction force but conventional EHTs often require between 0.

View Article and Find Full Text PDF

Recent advances in microfluidic engineering allow the creation of microenvironments in which human cells can be cultured under (patho-)physiological conditions with greater reality than standard plastic tissue culture plates. Microfluidic devices, also called Organs-on-Chip (OoC), allow complex engineering of the cellular compartment, yielding designs in which microfluidic flow can be precisely controlled. However, it is important that cellular physiology is not only controlled but can also be monitored in these devices.

View Article and Find Full Text PDF

Three-dimensional (3D) matrix models using hydrogels are powerful tools to understand and predict cell behavior. The interactions between the cell and its matrix, however is highly complex: the matrix has a profound effect on basic cell functions but simultaneously, cells are able to actively manipulate the matrix properties. This (mechano)reciprocity between cells and the extracellular matrix (ECM) is central in regulating tissue functions and it is fundamentally important to broadly consider the biomechanical properties of the ECM when designing matrix models.

View Article and Find Full Text PDF

The application of stem cell-derived secretome in regenerative therapies offers the key advantage that instead of the stem cells, only their effective paracrine compounds are delivered. Ideally, the secretome can be steered by the culture conditions of the stem cells. So far, most studies use stem cells cultured on stiff plastic substrates, not representative of their native 3D environment.

View Article and Find Full Text PDF

During space missions, astronauts are exposed to a stream of energetic and highly ionizing radiation particles that can suppress immune system function, increase cancer risks and even induce acute radiation syndrome if the exposure is large enough. As human exploration goals shift from missions in low-Earth orbit (LEO) to long-duration interplanetary missions, radiation protection remains one of the key technological issues that must be resolved. In this work, we introduce the NEUtron DOSimetry & Exploration (NEUDOSE) CubeSat mission, which will provide new measurements of dose and space radiation quality factors to improve the accuracy of cancer risk projections for current and future space missions.

View Article and Find Full Text PDF