The wide range of mass spectrometry imaging (MSI) technologies enables the spatial distributions of many analyte classes to be investigated. However, as each approach is best suited to certain analytes, combinations of different MSI techniques are increasingly being explored to obtain more chemical information from a sample. In many cases, performing a sequential analysis of the same tissue section is ideal to enable a direct correlation of multimodal data.
View Article and Find Full Text PDFMetalation of dimesitylphosphane oxide, MesP(O)H (1), with alkali metal reagents (BuLi, NaH, and A(hmds); A = K, Rb, and Cs) in THF yields the corresponding dimesitylphosphinites of lithium (2-thf), sodium (3-thf), potassium (4-thf), rubidium (5-thf), and caesium (6). Their molecular structures exhibit a broad and fascinating variety. Dinuclear compounds 2-thf, 3-thf, and 5-thf have central four-membered AO rings, whereas the potassium congener crystallises as a tetranuclear complex with an inner AO heterocubane cage.
View Article and Find Full Text PDFTransition metals like copper (Cu), iron (Fe), and zinc (Zn) are vital for normal central nervous system function and are also linked to neurodegeneration, particularly in the onset and progression of Alzheimer's disease (AD). Their alterations in AD, identified prior to amyloid plaque aggregation, offer a unique target for staging pre-amyloid AD. However, analysing their levels in the brain is extremely challenging, necessitating the development of alternative approaches.
View Article and Find Full Text PDFGelatine is the external standard matrix of choice for quantitative biomaging of elements and metal tags in tissue. Its ablation characteristics closely match that of tissue when using 193 and 213 nm lasers, but this has not been demonstrated at 266 nm. With the interest in 266 nm laser ablation systems growing due to the selective ablation of tissue over glass substrates, this gap needed to be investigated.
View Article and Find Full Text PDFElemental bioimaging of low abundant elements via laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) is hampered by a lack of sensitivity. Novel solutions for specific applications have been developed, however there is a need for more universal approaches. Here we investigated the addition of N to the ICP carrier gas to increase sensitivity, defined as signal-to-background, for the majority of biologically relevant elements.
View Article and Find Full Text PDF