The cognitive neuroscience of human aging seeks to identify neural mechanisms behind the commonalities and individual differences in age-related behavioral changes. This goal has been pursued predominantly through structural or "task-free" resting-state functional neuroimaging. The former has elucidated the material foundations of behavioral decline, and the latter has provided key insight into how functional brain networks change with age.
View Article and Find Full Text PDFIn the present study, we investigated the cognitive processes underlying selective word learning in preschoolers. We measured rhythmic neural activity in the theta (4-8 Hz) and alpha frequency range (7-12 Hz) in 67 four-year-olds. EEG was recorded during anticipation and encoding of novel labeling events performed by a speaker who had previously shown either competence (correct) or incompetence (incorrect) in labeling familiar objects.
View Article and Find Full Text PDFMemory enables generalization to new situations, and memory specificity that preserves individual episodes. This study investigated generalization, memory specificity, and their overnight fate in 141 4- to 8-year-olds (computerized memory game; 71 females, tested 2020-2021 in Germany). The results replicated age effects in generalization and memory specificity, and a contingency of generalization on object conceptual properties and interobject semantic proximity.
View Article and Find Full Text PDF