Introduction: Photochemical Internalization is a novel drug delivery technology for cancer treatment based on the principle of Photodynamic Treatment. Using a photosensitizer that locates in endocytic vesicles membranes of tumor cells, Photochemical internalization enables cytosolic release of endocytosed antitumor agents in a site-specific manner. The purpose of the present in-vitro study was to explore whether Photochemical Internalization is able to enhance the efficacy of Ranpirnase, a cytotoxic amphibian ribonuclease, for eradication of squamous cell carcinoma of the head and neck.
View Article and Find Full Text PDFThere is increasing experimental evidence for an important role of Angiopoietin-2 (Ang-2) in tumor angiogenesis and progression. In addition, Ang-2 is up-regulated in many cancer types and correlated with poor prognosis. To investigate the functional role of Ang-2 inhibition in tumor development and progression, we generated novel fully human antibodies that neutralize specifically the binding of Ang-2 to its receptor Tie2.
View Article and Find Full Text PDFObjectives: To assess the safety and feasibility of hexaminolevulinate (HAL) based photodynamic therapy (PDT) as adjuvant treatment after transurethral resection of the bladder (TURB) in patients with intermediate or high-risk urothelial cell carcinoma (UCC) of the bladder.
Materials And Methods: Seventeen patients received 50 ml of either a 16 mM (4 patients) or 8 mM HAL (13 patients) solution instilled intravesically. Bladder wall irradiation was performed using an incoherent white light source coupled via a quartz fiber assembled into a flexible transurethral irrigation catheter.
The endonuclease P2A initiates the DNA replication of the bacteriophage P2 by making a covalent bond with its own phosphate backbone. This enzyme has now been exploited as a new in vitro display tool for antibody fragments. We have constructed genetic fusions of P2A with single-chain antibodies (scFvs).
View Article and Find Full Text PDFDespite an extensive research on the molecular basis of epilepsy, the essential players in the epileptogenic process leading to epilepsy are not known. Gene expression analysis is one strategy to enhance our understanding of the genes contributing to the functional neuronal changes underlying epileptogenesis. In the present study, we used the novel MPSS (massively parallel signature sequencing) method for analysis of gene expression in the rat kindling model of temporal lobe epilepsy.
View Article and Find Full Text PDF