Publications by authors named "M Wellhoefer"

For scale up and efficient production of protein loaded nanoparticles continuous separation by size exclusion chromatography in simulated moving bed (SMB) mode helps do reduce unbound protein concentration and increase yields for perfectly covered particles. Silica nanoparticles were loaded with an excess of beta casein or bovine serum albumin (BSA) and the loaded particles purified by size exclusion chromatography using Sephacryl300 as stationary phase in a four zone SMB. We determined our working points for the SMB from batch separations and the triangle theory described by Mazzotti et al.

View Article and Find Full Text PDF

Continuous processing of recombinant proteins was accomplished by combining continuous matrix-assisted refolding and purification by tandem simulated moving bed (SMB) size-exclusion chromatography (SEC). Recombinant proteins, N(pro) fusion proteins from inclusion bodies were dissolved with NaOH and refolded in the SMB system with a closed-loop set-up with refolding buffer as the desorbent buffer and buffer recycling of the refolding buffer of the raffinate by tangential flow filtration. For further purification of the refolded proteins, a second SMB operation also based on SEC was added.

View Article and Find Full Text PDF

An integrated process which combines continuous inclusion body dissolution with NaOH and continuous matrix-assisted refolding based on closed-loop simulated moving bed size exclusion chromatography was designed and experimentally evaluated at laboratory scale. Inclusion bodies from N(pro) fusion pep6His and N(pro) fusion MCP1 from high cell density fermentation were continuously dissolved with NaOH, filtered and mixed with concentrated refolding buffer prior to refolding by size exclusion chromatography (SEC). This process enabled an isocratic operation of the simulated moving bed (SMB) system with a closed-loop set-up with refolding buffer as the desorbent buffer and buffer recycling by concentrating the raffinate using tangential flow filtration.

View Article and Find Full Text PDF

A reversed phase high pressure liquid chromatography method was developed for determination of in vitro refolding and cleavage kinetics for the N(pro) autoprotease fusion peptide EDDIE-pep6His using a TSK Super-Octyl column with a segmented acetonitrile gradient. Self-cleaving fusion proteins such as N(pro) autoprotease fusion proteins consist of the single autoprotease N(pro) and a target peptide or a target protein as fusion partner. Hence, three protein species are present after self-cleavage: the target peptide or protein, the single N(pro) autoprotease and, in case of incomplete cleavage, residual N(pro) fusion protein.

View Article and Find Full Text PDF

Matrix-assisted refolding is an excellent technique for performing refolding of recombinant proteins at high concentration because aggregation during refolding is partially suppressed. The autoprotease N(pro) and its engineered mutant EDDIE can be efficiently refolded on cation-exchangers. In the current work, denatured fusion proteins were loaded at different column saturations (5 and 50 mg mL(-1) gel), and refolding and self-cleavage were initiated during elution.

View Article and Find Full Text PDF