Publications by authors named "M Weerapura"

The differentiation and activation of macrophages are critical regulatory programs that are central to host inflammation and pathogen defense. However, the transcriptional regulatory pathways involved in these programs are not well understood. Herein, we demonstrate that the activity and expression of the transcription factor ATF2 is precisely regulated during primary human monocyte-to-macrophage differentiation and that its activation is linked to M1 polarization and antibacterial responses.

View Article and Find Full Text PDF

Absence seizures are a common seizure type in children with genetic generalized epilepsy and are characterized by a temporary loss of awareness, arrest of physical activity, and accompanying spike-and-wave discharges on an electroencephalogram. They arise from abnormal, hypersynchronous neuronal firing in brain thalamocortical circuits. Currently available therapeutic agents are only partially effective and act on multiple molecular targets, including γ-aminobutyric acid (GABA) transaminase, sodium channels, and calcium (Ca(2+)) channels.

View Article and Find Full Text PDF

Background: We have previously demonstrated that PDGF receptor activation indirectly inhibits N-methyl-D-aspartate (NMDA) currents by modifying the cytoskeleton. PDGF receptor ligand is also neuroprotective in hippocampal slices and cultured neurons. PDGF receptors are tyrosine kinases that control a variety of signal transduction pathways including those mediated by PLCγ.

View Article and Find Full Text PDF

The induction of long-term potentiation at CA3-CA1 synapses is caused by an N-methyl-d-aspartate (NMDA) receptordependent accumulation of intracellular Ca(2+), followed by Src family kinase activation and a positive feedback enhancement of NMDA receptors (NMDARs). Nevertheless, the amplitude of baseline transmission remains remarkably constant even though low frequency stimulation is also associated with an NMDAR-dependent influx of Ca(2+) into dendritic spines. We show here that an interaction between C-terminal Src kinase (Csk) and NMDARs controls the Src-dependent regulation of NMDAR activity.

View Article and Find Full Text PDF

Protein kinase C (PKC) phosphorylates the NR1 and NR2A subunits of NMDARs at consensus sites located within their intracellular C-terminal tails. However, the functional consequences of these biochemical events are not well understood. In HEK293 cells expressing NR1/NR2A, activation of endogenous PKC by 4beta-phorbol 12-myristate 13-acetate (PMA) increased NMDAR desensitization as evidenced by a reduced steady-state current without any change in peak.

View Article and Find Full Text PDF