Toward a conversion of aldehydes into arenes, we designed a sequence involving the initial reaction of an aldehyde to give a fulvene, followed by photochemical and platinum-catalyzed rearrangements into a Dewar benzene derivative, which finally isomerizes into the targeted arene. While computational studies support the plausibility of this route, we found that fulvene irradiation resulted in an unexpected isomerization into a spiro[2.4]heptadiene.
View Article and Find Full Text PDFRationale: Structural characterization of individual compounds in very complex mixtures is difficult to achieve. One important step in structural elucidation is understanding the mass spectrometric fragmentation mechanisms of the compounds present in such mixtures. Here, different individual compounds presumed to be present in a complex crude oil mixture have been synthesized and structurally characterized by tandem mass spectrometry (MS/MS) studies.
View Article and Find Full Text PDFThe development of a highly enantioselective catalytic oxa-Pictet-Spengler reaction has proven a great challenge for chemical synthesis. We now report the first example of such a process, which was realized by utilizing a nitrated confined imidodiphosphoric acid catalyst. Our approach provides substituted isochroman derivatives from both aliphatic and aromatic aldehydes with high yields and excellent enantioselectivities.
View Article and Find Full Text PDFA highly enantioselective Brønsted acid catalyzed intramolecular carbonyl-ene reaction of olefinic aldehydes has been developed. Using a confined imidodiphosphate catalyst, the reaction delivers diverse trans-3,4-disubstituted carbo- and heterocyclic five-membered rings in high yields and with good to excellent diastereo- and enantioselectivities. ESI-MS, NMR, and DFT mechanistic studies reveal that the reaction proceeds via a stepwise pathway involving a novel covalent intermediate.
View Article and Find Full Text PDFA multicatalytic three-step reaction consisting of epoxidation, hydrolysis, and enantioselective monoacylation of cyclohexene was studied by using mass spectrometry (MS). The reaction sequence was carried out in a one-pot reaction using a multicatalyst. All reaction steps were thoroughly analyzed by electrospray ionization (ESI) MS (and MS/MS), as well as high-resolution MS for structure elucidation.
View Article and Find Full Text PDF