A progressive loss of functional nephrons defines chronic kidney disease (CKD). Complications related to cardiovascular disease (CVD) are the principal causes of mortality in CKD; however, the acceleration of CVD in CKD remains unresolved. Our study used a complementary proteomic approach to assess mild and advanced CKD patients with different atherosclerosis stages and two groups of patients with different classical CVD progression but without renal dysfunction.
View Article and Find Full Text PDFChronic kidney disease (CKD) is characterized by the progressive loss of functional nephrons. Although cardiovascular disease (CVD) complications and atherosclerosis are the leading causes of morbidity and mortality in CKD, the mechanism by which the progression of CVD accelerates remains unclear. To reveal the molecular mechanisms associated with atherosclerosis linked to CKD, we applied a shotgun lipidomics approach fortified with standard laboratory analytical methods and gas chromatography-mass spectrometry technique on selected lipid components and precursors to analyze the plasma lipidome in CKD and classical CVD patients.
View Article and Find Full Text PDFOur study aimed to identify the relationship between advanced glycation end products (AGEs), soluble receptor for advanced glycation end products (sRAGE), the AGEs/sRAGE, and uric acid (UA) levels in selected atherosclerosis diseases, i.e., abdominal aortic aneurysms (AAA), aortoiliac occlusive disease (AIOD), and chronic kidney disease (CKD), resulting from apparent differences in oxidative stress intensity.
View Article and Find Full Text PDFBackground: Klotho, originally identified as an anti-aging factor, is a transmembrane protein expressed in the kidney. It has been reported that Klotho deficiency could be associated with a loss of residual renal function and cardiovascular complications in peritoneal dialysis (PD) patients.
Objectives: The main aim of the study was to evaluate whether serum levels of Klotho correlate with residual diuresis and hydration status in PD patients.
Objectives: The main question of this study was to evaluate the intensity of oxidative protein modification shown as advanced oxidation protein products (AOPP) and carbonylated proteins, expressed as protein carbonyl content (C=O) in abdominal aortic aneurysms (AAA), aortoiliac occlusive disease (AIOD), and chronic kidney disease (CKD).
Design And Methods: The study was carried out in a group of 35 AAA patients and 13 AIOD patients. However, CKD patients were divided into two groups: predialysis (PRE) included 50 patients or hemodialysis (HD) consisted of 34 patients.