Publications by authors named "M Wakamori"

Article Synopsis
  • The study focuses on creating artificial cell models using lipid vesicles that can facilitate cell-free protein synthesis (CFPS), which is key for protein expression and gene circuits.
  • Researchers investigated how different lipid compositions (neutral, positively, negatively charged) in giant lipid vesicles affect transcription and translation processes over various incubation times.
  • Results indicated that lipid vesicles with positively charged lipids exhibited higher transcriptional and translational activities, highlighting their potential for improving artificial cell designs.
View Article and Find Full Text PDF

Histone acetylation is important for the activation of gene transcription but little is known about its direct read/write mechanisms. Here, we report cryogenic electron microscopy structures in which a p300/CREB-binding protein (CBP) multidomain monomer recognizes histone H4 N-terminal tail (NT) acetylation (ac) in a nucleosome and acetylates non-H4 histone NTs within the same nucleosome. p300/CBP not only recognized H4NTac via the bromodomain pocket responsible for reading, but also interacted with the DNA minor grooves via the outside of that pocket.

View Article and Find Full Text PDF

Histone lysine acylation, including acetylation and crotonylation, plays a pivotal role in gene transcription in health and diseases. However, our understanding of histone lysine acylation has been limited to gene transcriptional activation. Here, we report that histone H3 lysine 27 crotonylation (H3K27cr) directs gene transcriptional repression rather than activation.

View Article and Find Full Text PDF

Polycomb repressive complex 1 (PRC1) and PRC2 are responsible for epigenetic gene regulation. PRC1 ubiquitinates histone H2A (H2Aub), which subsequently promotes PRC2 to introduce the H3 lysine 27 tri-methyl (H3K27me3) repressive chromatin mark. Although this mechanism provides a link between the two key transcriptional repressors, PRC1 and PRC2, it is unknown how histone-tail dynamics contribute to this process.

View Article and Find Full Text PDF

The peripheral sensory nerve must be maintained to perceive environmental changes. Daily physiological mechanical stimulations, like gravity, floor reaction force, and occlusal force, influence the nerve homeostasis directly or indirectly. Although the direct axonal membrane stretch enhances axon outgrowth via mechanosensitive channel activation, the indirect mechanisms remain to be elucidated.

View Article and Find Full Text PDF