Publications by authors named "M W van der Schaar"

The application of machine learning in medicine and healthcare has led to the creation of numerous diagnostic and prognostic models. However, despite their success, current approaches generally issue predictions using data from a single modality. This stands in stark contrast with clinician decision-making which employs diverse information from multiple sources.

View Article and Find Full Text PDF

Objectives: To facilitate the stratification of patients with osteoarthritis (OA) for new treatment development and clinical trial recruitment, we created an automated machine learning (autoML) tool predicting the rapid progression of knee OA over a 2-year period.

Methods: We developed autoML models integrating clinical, biochemical, X-ray and MRI data. Using two data sets within the OA Initiative-the Foundation for the National Institutes of Health OA Biomarker Consortium for training and hold-out validation, and the Pivotal Osteoarthritis Initiative MRI Analyses study for external validation-we employed two distinct definitions of clinical outcomes: Multiclass (categorising OA progression into pain and/or radiographic) and binary.

View Article and Find Full Text PDF

Purpose: This brief report aims to summarize and discuss the methodologies of eXplainable Artificial Intelligence (XAI) and their potential applications in surgery.

Methods: We briefly introduce explainability methods, including global and individual explanatory features, methods for imaging data and time series, as well as similarity classification, and unraveled rules and laws.

Results: Given the increasing interest in artificial intelligence within the surgical field, we emphasize the critical importance of transparency and interpretability in the outputs of applied models.

View Article and Find Full Text PDF

Rapid advancements in medical AI necessitate targeted educational initiatives for clinicians to ensure AI tools are safe and used effectively to improve patient outcomes. To support decision-making among stakeholders in medical education, we propose three tiers of medical AI expertise and outline the challenges for medical education at different educational stages. Additionally, we offer recommendations and examples, encouraging stakeholders to adapt and shape curricula for their specific healthcare setting using this framework.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5qvjesar1o7q1h4oo7bkkfbei0h6ac4q): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once