Publications by authors named "M W Tingley"

Climatic warming can shift community composition driven by the colonization-extinction dynamics of species with different thermal preferences; but simultaneously, habitat fragmentation can mediate species' responses to warming. As this potential interactive effect has proven difficult to test empirically, we collected data on birds over 10 years of climate warming in a reservoir subtropical island system that was formed 65 years ago. We investigated how the mechanisms underlying climate-driven directional change in community composition were mediated by habitat fragmentation.

View Article and Find Full Text PDF

Climate change is shifting the phenology of migratory animals earlier; yet an understanding of how climate change leads to variable shifts across populations, species and communities remains hampered by limited spatial and taxonomic sampling. In this study, we used a hierarchical Bayesian model to analyse 88,965 site-specific arrival dates from 222 bird species over 21 years to investigate the role of temperature, snowpack, precipitation, the El-Niño/Southern Oscillation and the North Atlantic Oscillation on the spring arrival timing of Nearctic birds. Interannual variation in bird arrival on breeding grounds was most strongly explained by temperature and snowpack, and less strongly by precipitation and climate oscillations.

View Article and Find Full Text PDF

Terrestrial species can respond to a warming climate in multiple ways, including shifting in space (via latitude or elevation) and time (via phenology). Evidence for such shifts is often assessed independent of other temperature-tracking mechanisms; critically, no study has compared shifts across all three spatiotemporal dimensions. Here we used two continental-scale monitoring databases to estimate trends in the breeding latitude (311 species), elevation (251 species) and phenology (111 species) of North American landbirds over 27 years, with a shared pool of 102 species.

View Article and Find Full Text PDF

In response to biodiversity loss and biotic community homogenization in urbanized landscapes, there are increasing efforts to conserve and increase biodiversity within urban areas. Accordingly, around the world, previously extirpated species are (re)colonizing and otherwise infiltrating urban landscapes, while other species are disappearing from these landscapes. Tracking the occurrence of traditionally urban intolerant species and loss of traditionally urban tolerant species should be a management goal of urban areas, but we generally lack tools to study this phenomenon.

View Article and Find Full Text PDF