Tonotopy is a prominent feature of the vertebrate auditory system and forms the basis for sound discrimination, but the molecular mechanism that underlies its formation remains largely elusive. Ephrin/Eph signaling is known to play important roles in axon guidance during topographic mapping in other sensory systems, so we investigated its possible role in the establishment of tonotopy in the mouse cochlear nucleus. We found that ephrin-A3 molecules are differentially expressed along the tonotopic axis in the cochlear nucleus during innervation.
View Article and Find Full Text PDFThe innervation of taste buds is an excellent model system for studying the guidance of axons during targeting because of their discrete nature and the high fidelity of innervation. The pregustatory epithelium of fungiform papillae is known to secrete diffusible axon guidance cues such as BDNF and Sema3A that attract and repel, respectively, geniculate ganglion axons during targeting, but diffusible factors alone are unlikely to explain how taste axon terminals are restricted to their territories within the taste bud. Nondiffusible cell surface proteins such as Ephs and ephrins can act as receptors and/or ligands for one another and are known to control axon terminal positioning in several parts of the nervous system, but they have not been studied in the gustatory system.
View Article and Find Full Text PDFThe geniculate ganglion, which provides innervation to taste buds in the anterior tongue and palate, is unique among sensory ganglia in that its neurons depend on both neurotrophin-4 (NT4) and brain-derived neurotrophic factor (BDNF) for survival. Whereas BDNF is additionally implicated in taste axon guidance at targeting stages, much less is known about the guidance role of NT4 during targeting, or about either neurotrophin during initial pathfinding. NT4 and BDNF have distinct expression patterns in vivo, raising the possibility of distinct roles.
View Article and Find Full Text PDFGeniculate axons are initially guided to discrete epithelial placodes in the lingual and palatal epithelium that subsequently differentiate into taste buds. In vivo approaches show that brain-derived neurotrophic factor (BDNF) mRNA is concentrated in these placodes, that BDNF is necessary for targeting taste afferents to these placodes, and that BDNF misexpression disrupts guidance. We used an in vitro approach to determine whether BDNF may act directly on geniculate axons as a trophic factor and as an attractant, and whether there is a critical period for responsiveness to BDNF.
View Article and Find Full Text PDFGeniculate ganglion axons arrive in the lingual mesenchyme on embryonic day 13 (E13), 3-4 days before penetrating fungiform papilla epithelium (E17). This latency may result from chemorepulsion by epithelial Sema3A (Dillon et al. (2004) Journal of Comparative Neurology 470, 13-24), or Sema3F, which we report is also expressed in this epithelium.
View Article and Find Full Text PDF