Animals have evolved mechanisms to travel safely and efficiently within different habitats. On a journey in dense terrains animals avoid collisions and cross narrow passages while controlling an overall course. Multiple hypotheses target how animals solve challenges faced during such travel.
View Article and Find Full Text PDFNeuromorphic engineering aims to build (autonomous) systems by mimicking biological systems. It is motivated by the observation that biological organisms-from algae to primates-excel in sensing their environment, reacting promptly to their perils and opportunities. Furthermore, they do so more resiliently than our most advanced machines, at a fraction of the power consumption.
View Article and Find Full Text PDFPrecise spike timing and temporal coding are used extensively within the nervous system of insects and in the sensory periphery of higher order animals. However, conventional Artificial Neural Networks (ANNs) and machine learning algorithms cannot take advantage of this coding strategy, due to their rate-based representation of signals. Even in the case of artificial Spiking Neural Networks (SNNs), identifying applications where temporal coding outperforms the rate coding strategies of ANNs is still an open challenge.
View Article and Find Full Text PDFAttentional selectivity tends to follow events considered as interesting stimuli. Indeed, the motion of visual stimuli present in the environment attract our attention and allow us to react and interact with our surroundings. Extracting relevant motion information from the environment presents a challenge with regards to the high information content of the visual input.
View Article and Find Full Text PDFConvolutional neural networks (CNNs) have become the dominant neural network architecture for solving many state-of-the-art (SOA) visual processing tasks. Even though graphical processing units are most often used in training and deploying CNNs, their power efficiency is less than 10 GOp/s/W for single-frame runtime inference. We propose a flexible and efficient CNN accelerator architecture called NullHop that implements SOA CNNs useful for low-power and low-latency application scenarios.
View Article and Find Full Text PDF