Publications by authors named "M W Kilimann"

Introduction: Lipopolysaccharide-responsive and beige-like anchor (LRBA) is a scaffolding protein that interacts with proteins such as CTLA-4 and PKA, the importance of which has been determined in various cell types, including T regulatory cells, B cells, and renal cells. LRBA deficiency is associated with an inborn error in immunity characterized by immunodeficiency and autoimmunity. In addition to defects in T regulatory cells, patients with LRBA deficiency also exhibit B cell defects, such as reduced cell number, low memory B cells, hypogammaglobulinemia, impaired B cell proliferation, and increased autophagy.

View Article and Find Full Text PDF

Introduction: Lrba is a cytoplasmic protein involved in vesicular trafficking. -deficient () mice exhibit substantially higher levels of IgA in both serum and feces than wild-type (WT) mice. Transforming growth factor β1 (TGFβ1) and its receptors (TGFβR I and II) is essential for differentiating IgA+ B cells.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) can generate all blood cells. This ability is exploited in HSC transplantation (HSCT) to treat hematologic disease. A clear understanding of the molecular mechanisms that regulate HSCT is necessary to continue improving transplant protocols.

View Article and Find Full Text PDF

Mutations in LRBA, a BEACH domain protein, cause severe immune deficiency in humans. LRBA is expressed in many tissues and organs according to biochemical analysis, but little is known about its cellular and subcellular localization, and its deficiency phenotype outside the immune system. By LacZ histochemistry of Lrba gene-trap mice, we performed a comprehensive survey of LRBA expression in numerous tissues, detecting it in many if not all epithelia, in exocrine and endocrine cells, and in subpopulations of neurons.

View Article and Find Full Text PDF
Article Synopsis
  • * The study tracks the postsynaptic proteome in developing male mice and common marmosets, highlighting differential expression of synaptogenesis-related proteins at various ages in both species.
  • * Findings reveal that while early changes in the marmoset brain are similar to those in mice, later developmental changes differ significantly, underscoring the complexity of synapse maturation across species.
View Article and Find Full Text PDF