Broadband CARS is a coherent Raman scattering technique that provides access to the full biological vibrational spectrum within milliseconds, facilitating the recording of widefield hyperspectral Raman images. In this work, BCARS hyperspectral images of unstained cells from two different cell lines of immune lineage (T cell [Jurkat] and pDCs [CAL-1]) were recorded and analyzed using multivariate statistical algorithms in order to determine the spectral differences between the cells. A classifier was trained which could distinguish the known cells with a 97% out-of-bag accuracy.
View Article and Find Full Text PDFThere is growing interest in using deep learning models to automate wildlife detection in aerial imaging surveys to increase efficiency, but human-generated annotations remain necessary for model training. However, even skilled observers may diverge in interpreting aerial imagery of complex environments, which may result in downstream instability of models. In this study, we present a framework for assessing annotation reliability by calculating agreement metrics for individual observers against an aggregated set of annotations generated by clustering multiple observers' observations and selecting the mode classification.
View Article and Find Full Text PDFPurpose Of Review: Prader-Willi (PWS) and Angelman (AS) syndromes arise from errors in 15q11-q13 imprinting. This review describes recent advances in genomics and how these expand our understanding of these rare disorders, guiding treatment strategies to improve patient outcomes.
Recent Findings: PWS features include severe infantile hypotonia, failure to thrive, hypogonadism, developmental delay, behavioral and psychiatric features, hyperphagia, and morbid obesity, if unmanaged.
Importance: Hormone treatments for genitourinary syndrome of menopause (GSM) symptoms have limitations. There is interest in nonhormone therapies, including energy-based interventions. Benefits and harms of energy-based interventions are not currently well known.
View Article and Find Full Text PDFThis paper presents a lens-free imaging approach utilizing an array of light sources, capable of measuring the dielectric properties of many particles simultaneously. This method employs coplanar electrodes to induce velocity changes in flowing particles through dielectrophoretic forces, allowing the inference of individual particle properties from differential velocity changes. Both positive and negative forces are detectable.
View Article and Find Full Text PDF