Prediction of lower third molar eruption is crucial for its timely extraction. Therefore, the primary aim of this study was to investigate the prediction of lower third molar eruption and its uprighting with the assistance of an artificial intelligence (AI) tool. The secondary aim was identifying the incidence of fully erupted lower third molars with hygienic cleansability.
View Article and Find Full Text PDFThis work presents a joint spatial modeling framework to improve estimation of the spatial distribution of the latent COVID-19 incidence in Belgium, based on test-confirmed COVID-19 cases and crowd-sourced symptoms data as reported in a large-scale online survey. Correction is envisioned for stochastic dependence between the survey's response rate and spatial COVID-19 incidence, commonly known as preferential sampling, but not found significant. Results show that an online survey can provide valuable auxiliary data to optimize spatial COVID-19 incidence estimation based on confirmed cases in situations with limited testing capacity.
View Article and Find Full Text PDFBackground: A year after the start of the COVID-19 outbreak, the global rollout of vaccines gives us hope of ending the pandemic. Lack of vaccine confidence, however, poses a threat to vaccination campaigns. This study aims at identifying individuals' characteristics that explain vaccine willingness in Flanders (Belgium), while also describing trends over time (July-December 2020).
View Article and Find Full Text PDF