Publications by authors named "M Voronin"

The pathogenesis of Parkinson's disease (PD) involves abnormalities in the metabolism of catecholamines. The enzyme quinone reductase 2 (NQO2) reduces quinone derivatives of catecholamines, which promotes the formation of reactive oxygen species (ROS), suggesting a role for NQO2 in the development of cellular damage typical of PD. In the present study, we investigated the relationship between 6-hydroxydophamine (6-OHDA) induced cellular damage and NQO2 activity and its levels in SH-SY5Y cell culture to establish an experimental model to evaluate the pharmacological properties of NQO2 inhibitors.

View Article and Find Full Text PDF

Two groups of facts have been established in previous drug development studies of the non-benzodiazepine anxiolytic fabomotizole. First, fabomotizole prevents stress-induced decrease in binding ability of the GABA receptor's benzodiazepine site. Second, fabomotizole is a Sigma1R chaperone agonist, and exposure to Sigma1R antagonists blocks its anxiolytic effect.

View Article and Find Full Text PDF

Modern pharmacotherapy of neurodegenerative diseases is predominantly symptomatic and does not allow vicious circles causing disease development to break. Protein misfolding is considered the most important pathogenetic factor of neurodegenerative diseases. Physiological mechanisms related to the function of chaperones, which contribute to the restoration of native conformation of functionally important proteins, evolved evolutionarily.

View Article and Find Full Text PDF

Induction of BDNF-TrkB signaling is associated with the action mechanisms of conventional and fast-acting antidepressants. GSB-106, developed as a small dimeric dipeptide mimetic of BDNF, was previously shown to produce antidepressant-like effects in the mouse Porsolt test, tail suspension test, Nomura water wheel test, in the chronic social defeat stress model and in the inflammation-induced model of depression. In the present study, we evaluated the effect of chronic per os administration of GSB-106 to Balb/c mice under unpredictable chronic mild stress (UCMS).

View Article and Find Full Text PDF

The ability of NQO2 to increase the production of free radicals under enhanced generation of quinone derivatives of catecholamines is considered to be a component of neurodegenerative disease pathogenesis. The present study aimed to investigate the neuroprotective mechanisms of original NQO2 inhibitor M-11 (2-[2-(3-oxomorpholin-4-il)-ethylthio]-5-ethoxybenzimidazole hydrochloride) in a cellular damage model using NQO2 endogenous substrate adrenochrome (125 µM) and co-substrate BNAH (100 µM). The effects of M-11 (10-100 µM) on the reactive oxygen species (ROS) generation, apoptosis and lesion of nuclear DNA were evaluated using flow cytometry and single-cell gel electrophoresis assay (comet assay).

View Article and Find Full Text PDF