A recent diesel spill (dated January 2019 ± 1 month) in a refilling station is investigated by the Radon deficit technique. The primary focus was on quantifying the LNAPL pore saturation as a function of duration of ageing, and on proposing a predictive model for on-site natural attenuation. A biennial monitoring of the local fluctuating shallow aquifer has involved the saturated zone nine times, and the vadose zone only once.
View Article and Find Full Text PDFIn the frame of a collaboration between the Italian National Research Council (CNR) and Mares s.r.l.
View Article and Find Full Text PDFInt J Environ Res Public Health
January 2022
Radon (Rn) is a natural radioactive gas formed in rocks and soil by the decay of its parent nuclide (238-Uranium). The rate at which radon migrates to the surface, be it along faults or directly emanated from shallow soil, represents the Geogenic Radon Potential (GRP) of an area. Considering that the GRP is often linked to indoor radon risk levels, we have conducted multi-disciplinary research to: (i) define local GRPs and investigate their relationship with associated indoor Rn levels; (ii) evaluate inhaled radiation dosages and the associated risk to the inhabitants; and (iii) define radon priority areas (RPAs) as required by the Directive 2013/59/Euratom.
View Article and Find Full Text PDFThe outdoor gamma background of the historic center of Rome was studied by in situ measurements and average values of the outcropping geological formations. The survey resulted in two maps of dose equivalent rate, related to pre-anthropic and present conditions. Presently, the average of the dose equivalent rate from outdoor gamma-ray field is equal to 0.
View Article and Find Full Text PDFA detailed geochemical study on radon related to local geology was carried out in the municipality of Celleno, a little settlement located in the eastern border of the Quaternary Vulsini volcanic district (central Italy). This study included soil-gas and terrestrial gamma dose rate survey, laboratory analyses of natural radionuclides (U, Ra, Th, K) activity in rocks and soil samples, and indoor radon measurements carried out in selected private and public dwellings. Soil-gas radon and carbon dioxide concentrations range from 6 to 253 kBq/m and from 0.
View Article and Find Full Text PDF