Glucocorticoids are potent anti-inflammatory drugs, although their use is associated with severe side effects. Loading glucocorticoids into suitable nanocarriers can significantly reduce these undesirable effects. Macrophages play a crucial role in inflammation, making them strategic targets for glucocorticoid-loaded nanocarriers.
View Article and Find Full Text PDFClassical spin liquids are paramagnetic phases that feature nontrivial patterns of spin correlations within their ground-state manifold whose degeneracy scales with system size. Often they harbor fractionalized excitations, and their low-energy fluctuations are described by emergent gauge theories. In this work, we discuss a model composed of chiral three-body spin interactions on the pyrochlore lattice that realizes a novel classical chiral spin liquid whose excitations are fractonalized while also displaying a fracton-like behavior.
View Article and Find Full Text PDFKondo impurities provide a nontrivial probe to unravel the character of the excitations of a quantum spin liquid. In the S = 1/2 Kitaev model on the honeycomb lattice, Kondo impurities embedded in the spin-liquid host can be screened by itinerant Majorana fermions via gauge-flux binding. Here, we report experimental signatures of metallic-like Kondo screening at intermediate temperatures in the Kitaev honeycomb material α-RuCl with dilute Cr (S = 3/2) impurities.
View Article and Find Full Text PDFIn this study, scanning electron microscopy (SEM) was used to study the cell structure of SARS-CoV-2 infected cells. Our measurements revealed infection remodeling caused by infection, including the emergence of new specialized areas where viral morphogenesis occurs at the cell membrane. Intercellular extensions for viral cell surfing have also been observed.
View Article and Find Full Text PDFThe annihilation of two intermediate-coupling renormalization-group (RG) fixed points is of interest in diverse fields from statistical mechanics to high-energy physics, but has so far only been studied using perturbative techniques. Here we present high-accuracy quantum Monte Carlo results for the SU(2)-symmetric S=1/2 spin-boson (or Bose-Kondo) model. We study the model with a power-law bath spectrum ∝ω^{s} where, in addition to a critical phase predicted by perturbative RG, a stable strong-coupling phase is present.
View Article and Find Full Text PDF