Publications by authors named "M Virte"

Besides major advantages for telecommunication applications, vertical-cavity surface-emitting lasers (VCSELs) have attracted interest for their potential for neuro-inspired computing, frequency comb generation, or high-frequency spin oscillations. In the meantime, strain applied to the laser structure has been shown to have a significant impact on the laser emission properties such as the polarization dynamics or birefringence. In this work, we further explore the influence of strain on VCSELs and how this effect could be used to fine-tune the laser wavelength.

View Article and Find Full Text PDF

Time-delayed optical feedback is known to trigger a wide variety of complex dynamical behavior in semiconductor lasers. Adding a second optical feedback loop is naturally expected to further increase the complexity of the system and its dynamics, but due to interference between the two feedback arms, it was also quickly identified as a way to improve the laser stability. While these two aspects have already been investigated, the influence of the feedback phases, i.

View Article and Find Full Text PDF

A breakthrough technology, on-chip frequency comb sources offer broadband combs while being compact, energy-efficient, and cost-effective solutions for various applications from lidar to telecommunications. Yet, these sources encounter a fundamental trade-off between controllability and bandwidth: broadband combs, generated in microresonators, lack free-spectral range or spectral envelope control, while combs generated with electro-optic modulators can be carefully tailored but are limited in bandwidth. Here, we overcome this trade-off through agile spectral multiplication of narrowband combs.

View Article and Find Full Text PDF

Lasers designed to emit at multiple and controllable modes, or multi-wavelength lasers, have the potential to become key building blocks for future microwave photonic technologies. While many interesting schemes relying on optical injection have been proposed, the nonlinear mode coupling between different modes of a multi-wavelength laser and their dynamical behavior under optical injection remains vastly unexplored. Here, we experimentally and numerically study the effect of optical injection around the suppressed mode of a dual-wavelength laser and the resulting interactions with the dominant mode.

View Article and Find Full Text PDF

Fiber Bragg gratings (FBGs) have been advantageously used to improve the chaotic properties of semiconductor lasers. Though these components are known to be highly sensitive to environmental conditions, feedback phase fluctuations are often neglected. In this work, we experimentally demonstrate that the small variations of the propagation time induced by a simple thermal tuning of the FBG are sufficient to induce significant changes of the laser behavior.

View Article and Find Full Text PDF