Publications by authors named "M Villarreal-Salazar"

Introduction: Whether cardiac impairment can be fully discarded in McArdle disease-the paradigm of "exercise intolerance," caused by inherited deficiency of the skeletal muscle-specific glycogen phosphorylase isoform ("myophosphorylase")-remains to be determined.

Methods: Eight patients with McArdle disease and seven age/sex-matched controls performed a 15-min moderate, constant-load cycle-ergometer exercise bout followed by a maximal ramp test. Electrocardiographic and two-dimensional transthoracic (for cardiac dimension's assessment) and speckle tracking (for left ventricular global longitudinal strain (GLS) assessments) echocardiographic evaluations were performed at baseline.

View Article and Find Full Text PDF

Background & Aims: Ketone supplementation is gaining popularity. Yet, its effects on exercise performance when muscle glycogen cannot be used remain to be determined. McArdle disease can provide insight into this question, as these patients are unable to obtain energy from muscle glycogen, presenting a severely impaired physical capacity.

View Article and Find Full Text PDF

Background: McArdle disease is caused by myophosphorylase deficiency and results in complete inability for muscle glycogen breakdown. A hallmark of this condition is muscle oxidation impairment (e.g.

View Article and Find Full Text PDF

Carbohydrate availability affects fat metabolism during exercise; however, the effects of complete muscle glycogen unavailability on maximal fat oxidation (MFO) rate remain unknown. Our purpose was to examine the MFO rate in patients with McArdle disease, comprising an inherited condition caused by complete blockade of muscle glycogen metabolism, compared to healthy controls. Nine patients (three women, aged 36 ± 12 years) and 12 healthy controls (four women, aged 40 ± 13 years) were studied.

View Article and Find Full Text PDF

McArdle disease is an autosomal recessive disorder of muscle glycogen metabolism caused by pathogenic mutations in the gene, which encodes the skeletal muscle-specific isoform of glycogen phosphorylase. Clinical symptoms are mainly characterized by transient acute "crises" of early fatigue, myalgia and contractures, which can be accompanied by rhabdomyolysis. Owing to the difficulty of performing mechanistic studies in patients that often rely on invasive techniques, preclinical models have been used for decades, thereby contributing to gain insight into the pathophysiology and pathobiology of human diseases.

View Article and Find Full Text PDF