Glucagon-like peptide 1 (GLP-1) stimulates insulin secretion and holds significant pharmacological potential. Nevertheless, the regulation of energy homeostasis by centrally-produced GLP-1 remains partially understood. Preproglucagon cells, known to release GLP-1, are found in the olfactory bulb (OB).
View Article and Find Full Text PDFObjective: Glucose dependent insulinotropic polypeptide (GIP) is well established as an incretin hormone, boosting glucose-dependent insulin secretion. However, whilst anorectic actions of its sister-incretin glucagon-like peptide-1 (GLP-1) are well established, a physiological role for GIP in appetite regulation is controversial, despite the superior weight loss seen in preclinical models and humans with GLP-1/GIP dual receptor agonists compared with GLP-1R agonism alone.
Methods: We generated a mouse model in which GIP expressing K-cells can be activated through hM3Dq Designer Receptor Activated by Designer Drugs (DREADD, GIP-Dq) to explore physiological actions of intestinally-released GIP.
The β-lactam antibiotics have been successfully used for decades to combat susceptible Pseudomonas aeruginosa, which has a notoriously difficult to penetrate outer membrane (OM). However, there is a dearth of data on target site penetration and covalent binding of penicillin-binding proteins (PBP) for β-lactams and β-lactamase inhibitors in intact bacteria. We aimed to determine the time course of PBP binding in intact and lysed cells and estimate the target site penetration and PBP access for 15 compounds in P.
View Article and Find Full Text PDFObjective: The olfactory bulb (OB) codes for sensory information and contributes to the control of energy metabolism by regulating foraging and cephalic phase responses. Mitral cells are the main output neurons of the OB. The glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP-1R) system in the OB (GLP-1) has been shown to be a major regulator of mitral cell activity but its function in vivo is unclear.
View Article and Find Full Text PDFThe lack of effective first-line antibiotic treatments against Neisseria gonorrhoeae, and the worldwide dissemination of resistant strains, are the main drivers of a worsening global health crisis. β-lactam antibiotics have been the backbone of therapeutic armamentarium against gonococci. However, we are lacking critical insights to design rationally optimized therapies.
View Article and Find Full Text PDF