The universal optical logic gates, namely, nand and nor gates, have been theoretically simulated by employing the energy sharing collision of bright optical solitons in the Manakov system, governing pulse propagation in a highly birefringent fiber. Further, we also realize the two-input optical logic gates, such as and, or, xor, xnor, for completeness of our scheme. Interestingly, our idea behind the simulation naturally satisfies all the criteria for practical optical logic, which in turn displays the strength and versatility of our theoretical simulation of universal optical logic gates.
View Article and Find Full Text PDFThe energy-sharing collision of bright optical solitons in the Manakov system, governing pulse propagation in high birefringent fiber, is employed theoretically to realize optical logic gates. In particular, we successfully construct (theoretically) the universal NOR gate and the OR gate from the energy-sharing collisions of just four bright solitons which can be well described by the exact bright four-soliton solution of the Manakov system. This construction procedure has important merits such as realizing the two input gates with a minimal number of soliton collisions and possibilities of multistate logic.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2014
We consider a general multicomponent (2+1)-dimensional long-wave-short-wave resonance interaction (LSRI) system with arbitrary nonlinearity coefficients, which describes the nonlinear resonance interaction of multiple short waves with a long wave in two spatial dimensions. The general multicomponent LSRI system is shown to be integrable by performing the Painlevé analysis. Then we construct the exact bright multisoliton solutions by applying the Hirota's bilinearization method and study the propagation and collision dynamics of bright solitons in detail.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2014
We derive a (2+1)-dimensional multicomponent long-wave-short-wave resonance interaction (LSRI) system as the evolution equation for propagation of N-dispersive waves in weak Kerr-type nonlinear medium in the small-amplitude limit. The mixed- (bright-dark) type soliton solutions of a particular (2+1)-dimensional multicomponent LSRI system, deduced from the general multicomponent higher-dimensional LSRI system, are obtained by applying the Hirota's bilinearization method. Particularly, we show that the solitons in the LSRI system with two short-wave components behave like scalar solitons.
View Article and Find Full Text PDF