The synthesis of silver nanoparticles with controlled physicochemical properties is essential for governing their intended functionalities and safety profiles. However, synthesis process involves multiple parameters that could influence the resulting properties. This challenge could be addressed with the development of predictive models that forecast endpoints based on key synthesis parameters.
View Article and Find Full Text PDFIn recent years, multifunctional inorganic-organic hybrid materials have been widely investigated in order to determine their potential synergetic, antagonist, or independent effects in terms of reactivity. The aim of this study was to design and characterize a new hybrid material by coupling well-known photocatalytic TiO nanoparticles with a mixture of lipopeptides (LP), to exploit its high binding affinity for metal cations as well as the ability to interact with bacterial membranes and disrupt their integrity. We used both chemical and colloidal synthesis methodologies and investigated how different TiO:LP weight ratios affected colloidal, physicochemical, and functional properties.
View Article and Find Full Text PDFNumerous recent advances in robotics have been inspired by the biological principle of tensile integrity-or "tensegrity"-to achieve remarkable feats of dexterity and resilience. Tensegrity robots contain compliant networks of rigid struts and soft cables, allowing them to change their shape by adjusting their internal tension. Local rigidity along the struts provides support to carry electronics and scientific payloads, while global compliance enabled by the flexible interconnections of struts and cables allows a tensegrity to distribute impacts and prevent damage.
View Article and Find Full Text PDFWe present Oncilla robot, a novel mobile, quadruped legged locomotion machine. This large-cat sized, 5.1 kg robot is one of a kind of a recent, bioinspired legged robot class designed with the capability of model-free locomotion control.
View Article and Find Full Text PDF