Publications by authors named "M Verwei"

Chitosan is object of pharmaceutical research as a candidate permeability enhancer. However, chitosan was recently shown to reduce the oral bioavailability of acyclovir in humans. The effect of chitosan on two processes determining the oral bioavailability of acyclovir, bioaccessibility and intestinal absorption, was now investigated.

View Article and Find Full Text PDF

Pharmaceutical research needs predictive in vitro tools for API bioavailability in humans. We evaluated two dynamic in vitro gastrointestinal models: TIM-1 and tiny-TIM. Four low-soluble APIs in various formulations were investigated in the TIM systems under fasted and fed conditions.

View Article and Find Full Text PDF

In contrast to primary hepatocytes, estimating carrier-mediated hepatic disposition by using a panel of single transfected cell-lines provides direct information on the contribution of the individual transporters to the net disposition. The most direct way to correct for differences in transporter abundance between cell-lines and tissue is by using absolute protein quantification. In the present study, the performance of this strategy to predict human hepatic uptake transport was investigated and compared with traditional scaling from primary human hepatocytes.

View Article and Find Full Text PDF

A reliable prediction of the oral bioavailability in humans is crucial and of high interest for pharmaceutical and food industry. The predictive value of currently used in silico methods, in vitro cell lines, ex vivo intestinal tissue and/or in vivo animal studies for human intestinal absorption, however, is often insufficient, especially when food-drug interactions are evaluated. Ideally, for this purpose healthy human intestinal tissue is used, but due to its limited availability there is a need for alternatives.

View Article and Find Full Text PDF

The use of laboratory animals for toxicity testing in chemical safety assessment meets increasing ethical, economic and legislative constraints. The development, validation and application of reliable alternatives for in vivo toxicity testing are therefore urgently needed. In order to use toxicity data obtained from in vitro assays for risk assessment, in vitro concentration-response data need to be translated into in vivo dose-response data that are needed to obtain points of departure for risk assessment, like a benchmark dose (BMD).

View Article and Find Full Text PDF