Publications by authors named "M Veling"

Down syndrome (DS) is caused by triplication of human chromosome 21 (HSA21). Although several HSA21 genes have been found to be responsible for aspects of DS, whether and how HSA21 genes interact with each other is poorly understood. DS patients and animal models present with a number of neurological changes, including aberrant connectivity and neuronal morphology.

View Article and Find Full Text PDF

Stable, highly productive mammalian cells are critical for manufacturing affordable and effective biological medicines. Establishing a rational design of optimal biotherapeutic expression systems requires understanding how cells support the high demand for efficient biologics production. To that end, we performed transcriptomics and high-throughput imaging studies to identify putative genes and morphological features that underpin differences in antibody productivity among clones from a Chinese hamster ovary cell line.

View Article and Find Full Text PDF

Down syndrome (DS) is caused by the trisomy of human chromosome 21 (HSA21). A major challenge in DS research is to identify the HSA21 genes that cause specific symptoms. Down syndrome cell adhesion molecule (DSCAM) is encoded by a HSA21 gene.

View Article and Find Full Text PDF

Background: In the 5 years that have passed since the publication of the 2018 International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis (ICAR-Allergic Rhinitis 2018), the literature has expanded substantially. The ICAR-Allergic Rhinitis 2023 update presents 144 individual topics on allergic rhinitis (AR), expanded by over 40 topics from the 2018 document. Originally presented topics from 2018 have also been reviewed and updated.

View Article and Find Full Text PDF

During mammalian neocortex development, nascent pyramidal neurons migrate along radial glial cells and overtake earlier-born neurons to terminate at the front of the developing cortical plate (CP), leading to the outward expansion of the CP border. While much has been learned about the cellular and molecular mechanisms that underlie the migration of pyramidal neurons, how migrating neurons bypass the preceding neurons at the end of migration to reach their final positions remains poorly understood. Here, we report that Down syndrome cell adhesion molecule (DSCAM) is required for migrating neurons to bypass their postmigratory predecessors during the expansion of the upper cortical layers.

View Article and Find Full Text PDF