Publications by authors named "M Vatsa"

Many large and complex deep neural networks have been shown to provide higher performance on various computer vision tasks. However, very little is known about the relationship between the complexity of the input data along with the type of noise and the depth needed for correct classification. Existing studies do not address the issue of common corruptions adequately, especially in understanding what impact these corruptions leave on the individual part of a deep neural network.

View Article and Find Full Text PDF

Chest Radiograph or Chest X-ray (CXR) is a common, fast, non-invasive, relatively cheap radiological examination method in medical sciences. CXRs can aid in diagnosing many lung ailments such as Pneumonia, Tuberculosis, Pneumoconiosis, COVID-19, and lung cancer. Apart from other radiological examinations, every year, 2 billion CXRs are performed worldwide.

View Article and Find Full Text PDF

A significant challenge for hospitals and medical practitioners in low- and middle-income nations is the lack of sufficient health care facilities for timely medical diagnosis of chronic and deadly diseases. Particularly, maternal and neonatal morbidity due to various non-communicable and nutrition related diseases is a serious public health issue that leads to several deaths every year. These diseases affecting either mother or child can be hospital-acquired, contracted during pregnancy or delivery, postpartum and even during child growth and development.

View Article and Find Full Text PDF

Consistent clinical observations of characteristic findings of COVID-19 pneumonia on chest X-rays have attracted the research community to strive to provide a fast and reliable method for screening suspected patients. Several machine learning algorithms have been proposed to find the abnormalities in the lungs using chest X-rays specific to COVID-19 pneumonia and distinguish them from other etiologies of pneumonia. However, despite the enormous magnitude of the pandemic, there are very few instances of public databases of COVID-19 pneumonia, and to the best of our knowledge, there is no database with annotation of abnormalities on the chest X-rays of COVID-19 affected patients.

View Article and Find Full Text PDF

Adversarial attacks have been demonstrated to fool the deep classification networks. There are two key characteristics of these attacks: firstly, these perturbations are mostly additive noises carefully crafted from the deep neural network itself. Secondly, the noises are added to the whole image, not considering them as the combination of multiple components from which they are made.

View Article and Find Full Text PDF