Publications by authors named "M Van Thillo"

Once it was established that the spaceflight environment was not a drastic impediment to plant growth, a remaining space biology question was whether long-term spaceflight exposure could cause changes in subsequent generations, even if they were returned to a normal Earth environment. In this study, we used a genomic approach to address this question. We tested whether changes in gene expression patterns occur in wheat plants that are several generations removed from growth in space, compared to wheat plants with no spaceflight exposure in their lineage.

View Article and Find Full Text PDF

Laboratory Biosphere is a 40-m3 closed life system equipped with 12,000 W of high pressure sodium lamps over planting beds with 5.37 m2 of soil. Atmospheric composition changes due to photosynthetic fixation of carbon dioxide and corresponding production of oxygen or the reverse, respiration, are observed in short timeframes, e.

View Article and Find Full Text PDF

Two crop growth experiments in the soil-based closed ecological facility, Laboratory Biosphere, were conducted from 2003 to 2004 with candidate space life support crops. Apogee wheat (Utah State University variety) was grown, planted at two densities, 400 and 800 seeds m-2. The lighting regime for the wheat crop was 16 h of light-8 h dark at a total light intensity of around 840 micromoles m-2 s-1 and 48.

View Article and Find Full Text PDF

Laboratory Biosphere is a 40 m3 closed life system that commenced operation in May 2002. Light is from 12,000 W of high pressure sodium lamps over planting beds with 5.37 m2 of soil.

View Article and Find Full Text PDF

Research and design of subsurface flow wetland wastewater treatment systems for a ground-based experimental prototype Mars Base facility has been carried out, using a subsurface flow approach. These systems have distinct advantages in planetary exploration scenarios: they are odorless, relatively low-labor and low-energy, assist in purification of water and recycling of atmospheric CO2, and will support some food crops. An area of 6-8 m2 may be sufficient for integration of wetland wastewater treatment with a prototype Mars Base supporting 4-5 people.

View Article and Find Full Text PDF