Publications by authors named "M V Yurkov"

Extreme ultraviolet (EUV) photon beam characterization techniques, Hartmann wavefront sensing and single shot ablation imprinting, were compared along the caustic of a tightly focused free-electron laser (FEL) beam at beamline FL24 of FLASH2, the Free-electron LASer in Hamburg at DESY. The transverse coherence of the EUV FEL was determined by a Young's double pinhole experiment and used in a back-propagation algorithm which includes partial coherence to calculate the beam intensity profiles along the caustic from the wavefront measurements. A very good agreement of the profile structure and size is observed for different wavelengths between the back-propagated profiles, an indirect technique, and ablation imprints.

View Article and Find Full Text PDF

Self-amplified spontaneous emission (SASE) pulses delivered by free electron lasers (FELs) are inherently fluctuating sources; each pulse varies in energy, duration, arrival time and spectral shape. Therefore, there is strong demand for a full characterization of the properties of SASE radiation, which will facilitate more precise interpretation of the experimental data taken at SASE FELs. In this paper, we present an investigation into the fluctuations of pulse duration, spectral distribution, arrival time and pulse energy of SASE XUV pulses at FLASH, both on a shot-to-shot basis and on average over many pulses.

View Article and Find Full Text PDF

For the High-Energy-Density (HED) beamline at the SASE2 undulator of the European XFEL, a hard X-ray split-and-delay unit (SDU) has been built enabling time-resolved pump/probe experiments with photon energies between 5 keV and 24 keV. The optical layout of the SDU is based on geometrical wavefront splitting and multilayer Bragg mirrors. Maximum delays between Δτ = ±1 ps at 24 keV and Δτ = ±23 ps at 5 keV will be possible.

View Article and Find Full Text PDF

Detectors based on microchannel plates (MCPs) are used to detect radiation from free-electron lasers. Three MCP detectors have been developed by JINR for the European XFEL (SASE1, SASE2 and SASE3 lines). These detectors are designed to operate in a wide dynamic range from the level of spontaneous emission to the SASE saturation level (between a few nJ up to 25 mJ), in a wide wavelength range from 0.

View Article and Find Full Text PDF

The THz beamline at FLASH, DESY, provides both tunable (1-300 THz) narrow-bandwidth (∼10%) and broad-bandwidth intense (up to 150 uJ) THz pulses delivered in 1 MHz bursts and naturally synchronized with free-electron laser X-ray pulses. Combination of these pulses, along with the auxiliary NIR and VIS ultrashort lasers, supports a plethora of dynamic investigations in physics, material science and biology. The unique features of the FLASH THz pulses and the accelerator source, however, bring along a set of challenges in the diagnostics of their key parameters: pulse energy, spectral, temporal and spatial profiles.

View Article and Find Full Text PDF