Publications by authors named "M V Uspenskaya"

The development of nanofibers with incorporated biologically active molecules with a targeted mode of action is a current research trend. Potential materials for the development of such systems include poly(vinyl alcohol) (PVA) and chitosan (CS) nanofibers, which are traditionally fabricated by the electrospinning of aqueous solutions of these polymers with acetic acid. To improve drug integration, ethanol was added to the binary-solvent system.

View Article and Find Full Text PDF

Dehydroepiandrosterone and its sulfate are the most abundant steroids in humans. The metabolism of dehydroepiandrosterone can differ significantly depending on the organ or tissue and the subtype of steroid receptors expressed in it. For dehydroepiandrosterone, as a precursor of all steroid hormones, intracrine hormonal activity is inherent.

View Article and Find Full Text PDF

Tissue adhesion of hydrogels plays an important role in wound healing, which can improve the efficiency of wound treatment, stop bleeding, facilitate tissue growth and wound closure. However, most non-covalent crosslinked hydrogels have weak tissue adhesion and rheological properties. Furthermore, it remains a challenge to synthesize a fully physically crosslinked hydrogel with good rheological properties without compromising its tissue adhesion strength.

View Article and Find Full Text PDF

To enhance the ecological properties of polyvinyl chloride (PVC) products, the fabrication of PVC-based composites using biofillers with acceptable performance characteristics could be considered. In this work, plant-filled PVC-based composite materials were fabricated and their optical, structural, thermal, and mechanical properties, depending on the nature of the filler, were studied. Spruce flour, birch flour, and rice husk were used as fillers.

View Article and Find Full Text PDF

In order to evaluate the role of substituents at 3-C and 17-C in the cytotoxic and cytoprotective actions of DHEA and 5-AED molecules, their derivatives were synthesized by esterification using the corresponding acid anhydrides or acid chlorides. As a result, seven compounds were obtained: four DHEA derivatives (DHEA 3-propionate, DHEA 3-butanoate, DHEA 3-acetate, DHEA 3-methylsulfonate) and three 5-AED derivatives (5-AED 3-butanoate, 5-AED 3,17-dipropionate, 5-AED 3,17-dibutanoate). All of these compounds showed micromolar cytotoxic activity toward HeLa and K562 human cancer cells.

View Article and Find Full Text PDF