The aim of the study was to investigate the mechanisms of Ca oscillation generation upon activation of connexin-43 and regulation of the lipolysis/lipogenesis balance in white adipocytes through vesicular ATP release. With fluorescence microscopy it was revealed that a decrease in the concentration of extracellular calcium ([Ca]) results in two types of Ca responses in white adipocytes: Ca oscillations and transient Ca signals. It was found that activation of the connexin half-channels is involved in the generation of Ca oscillations, since the blockers of the connexin hemichannels-carbenoxolone, octanol, proadifen and Gap26-as well as Cx43 gene knockdown led to complete suppression of these signals.
View Article and Find Full Text PDFVarious types of cells demonstrate ubiquitous rhythmicity registered as simple and complex Ca-oscillations, spikes, waves, and triggering phenomena mediated by G-protein and tyrosine kinase coupled receptors. Phospholipase C/IP-receptors (PLC/IPR) and endothelial NO-synthase/Ryanodine receptors (NOS/RyR)-dependent Ca signaling systems, organized as multivariate positive feedback generators (PLC-G and NOS-G), underlie this rhythmicity. Loss of rhythmicity at obesity may indicate deregulation of these signaling systems.
View Article and Find Full Text PDFObjective: This study aimed to investigate the connection between the mutation of the transcription factor and impaired Ca-signaling, which reflects changes in neurotransmission in the cerebral cortex .
Methods: We used mixed neuroglial cortical cell cultures derived from mutant mice. The cells were loaded with a fluorescent ratiometric calcium-sensitive probe Fura-2 AM and epileptiform activity was modeled by excluding magnesium ions from the external media or adding a GABA(A) receptor antagonist, bicuculline.