Publications by authors named "M V Schepetilnikov"

Mammalian/mechanistic target of rapamycin (mTOR) regulates global protein synthesis through inactivation of eIF4E-binding proteins (m4E-BPs) in response to nutrient and energy availability. Until now, 4E-BPs have been considered as metazoan inventions, and how target of rapamycin (TOR) controls cap-dependent translation initiation in plants remains obscure. Here, we present short unstructured 4E-BP-like Arabidopsis proteins (4EBP1/4EBP2) that are non-homologous to m4E-BPs except for the eIF4E-binding motif and TOR phosphorylation sites.

View Article and Find Full Text PDF
Article Synopsis
  • - Plant organogenesis relies on aligning metabolic resources with developmental programs, particularly in how roots form in Arabidopsis through lateral (LRs) and adventitious roots (ARs).
  • - Lateral root formation is driven by auxin and specific transcription factors, while adventitious roots depend on the activation of LBD16 by auxin and WOX11.
  • - The target-of-rapamycin (TOR) kinase plays a crucial role in regulating these processes by influencing the translation of key transcription factors involved in root branching and responding to metabolic signals.
View Article and Find Full Text PDF

Root hairs (RH) are excellent model systems for studying cell size and polarity since they elongate several hundred-fold their original size. Their tip growth is determined both by intrinsic and environmental signals. Although nutrient availability and temperature are key factors for a sustained plant growth, the molecular mechanisms underlying their sensing and downstream signaling pathways remain unclear.

View Article and Find Full Text PDF

RNA silencing is a conserved mechanism in eukaryotes involved in development and defense against viruses. In plants, ARGONAUTE1 (AGO1) protein plays a central role in both microRNA- and small interfering RNA-directed silencing, and its expression is regulated at multiple levels. Here, we report that the F-box protein FBW2 assembles an SCF complex that selectively targets for proteolysis AGO1 when it is unloaded and mutated.

View Article and Find Full Text PDF

The untranslated regions (UTRs) of mRNAs are involved in many posttranscriptional regulatory pathways. The rice OsMac1 mRNA has three splicing variants of the 5' UTR (UTRa, UTRb, and UTRc), which include a CU-rich region and three upstream open reading frames (uORFs). UTRc contains an additional 38-nt sequence, termed sp38, which acts as a strong translational enhancer of the downstream ORF; reporter analysis revealed translational efficiencies >15-fold higher with UTRc than with the other splice variants.

View Article and Find Full Text PDF