Publications by authors named "M V Reznikov"

We report experimental coupling of chiral magnetism and superconductivity in [IrFeCoPt]/Nb heterostructures. The stray field of skyrmions with radius ≈50  nm is sufficient to nucleate antivortices in a 25 nm Nb film, with unique signatures in the magnetization, critical current, and flux dynamics, corroborated via simulations. We also detect a thermally tunable Rashba-Edelstein exchange coupling in the isolated skyrmion phase.

View Article and Find Full Text PDF

Stand Up Paddleboard (SUP) surfing entails riding breaking waves and maneuvering the board on the wave face in a similar manner to traditional surfing. Despite some scientific investigations on SUP, little is known about SUP surfing. The aim of this study was to investigate the physiological response during SUP surfing sessions and to determine how various environmental conditions can influence this response.

View Article and Find Full Text PDF

We report thermodynamic magnetization measurements of two-dimensional electrons in several high-mobility Si metal-oxide-semiconductor field-effect transistors. We provide evidence for an easily polarizable electron state in a wide density range from insulating to deep into the metallic phase. The temperature and magnetic field dependence of the magnetization is consistent with the formation of large-spin droplets in the insulating phase.

View Article and Find Full Text PDF

Like dihydrogen, water exists as two spin isomers, ortho and para, with the nuclear magnetic moments of the hydrogen atoms either parallel or antiparallel. The ratio of the two spin isomers and their physical properties play an important role in a wide variety of research fields, ranging from astrophysics to nuclear magnetic resonance (NMR). Unlike ortho and para H(2), however, the two water isomers remain challenging to separate, and as a consequence, very little is currently known about their different physical properties.

View Article and Find Full Text PDF

An experimental study of current fluctuations through a tunable transmission barrier, a quantum point contact, is reported. We measure the probability distribution function of transmitted charge with precision sufficient to extract the first three cumulants. To obtain the intrinsic quantities, corresponding to voltage-biased barrier, we employ a procedure that accounts for the response of the external circuit and the amplifier.

View Article and Find Full Text PDF