Ovarian cancer (OC) presents daunting lethality rates worldwide, with frequent late-stage diagnosis and chemoresistance, highlighting the need for improved prognostic approaches. Venous thromboembolism (VTE), a major cancer mortality factor, is partially driven by endothelial dysfunction (ED). ED's pro-inflammatory state fosters tumour progression, suggesting a VTE-independent link between ED and cancer.
View Article and Find Full Text PDFUnderstanding how genetic variants affect the epigenome is key to interpreting GWAS, yet profiling these effects across the non-coding genome remains challenging due to experimental scalability. This necessitates accurate computational models. Existing machine learning approaches, while progressively improving, are confined to the cell types they were trained on, limiting their applicability.
View Article and Find Full Text PDFObjectives: As epilepsy management medical devices emerge as potential technological solutions for prediction and prevention of sudden death in epilepsy (SUDEP), there is a gap in understanding the features and priorities that should be included in the design of these devices. This study aims to bridge the gap between current technology and emerging needs by leveraging insights from persons with epilepsy (PWE) and caregivers (CG) on current epilepsy management devices and understanding how SUDEP awareness influences preferences and design considerations for potential future solutions.
Methods: Two cross-sectional surveys were designed to survey PWE and CG on medical device design features, SUDEP awareness, and participation in medical device research.
Ovarian cancer (OC) is a leading cause of death among gynaecological malignancies. The haemostatic system, which controls blood flow and prevents clotting disorders, paradoxically drives OC progression while increasing the risk of venous thromboembolism (VTE). MicroRNAs (miRNAs) have emerged as crucial in understanding VTE pathogenesis.
View Article and Find Full Text PDF