Publications by authors named "M V Poornima"

Article Synopsis
  • The research focuses on using enzyme-hydrolysis of Acalypha hispida plant leaves to create nanocellulose, showcasing its eco-friendly and biocompatible benefits.
  • The enzyme used, xylanase, was sourced from Bacillus pumilus and shown to effectively hydrolyze xylan, leading to the successful synthesis of enzyme-hydrolyzed nanocellulose (EHNC).
  • The produced EHNC has desirable properties like small particle size (15-40 nm) and low production cost, indicating its potential for efficient and sustainable applications in advanced materials.
View Article and Find Full Text PDF

Immunocompromised patients are prone to various opportunistic infections. Most of the infections are easily detectable through staining, culture, and polymerase chain reaction techniques. Nevertheless, it is also important to have wet smear examinations of samples.

View Article and Find Full Text PDF

Hyperinsulinemia (HI) induced insulin resistance (IR) and associated pathologies are the burning and unsolvable issues in diabetes treatment. The cellular, molecular and biochemical events associated with HI are not yet elucidated. Similarly, no focused research on designing therapeutic strategies with natural products for attenuation of HI are seen in literature.

View Article and Find Full Text PDF

Enterocytozoon hepatopenaei (EHP), is an emerging microsporidian pathogen responsible for hepatopancreatic microsporidiasis (HPM) in shrimps and is associated with severe growth retardation. The disease causes economic losses in shrimp aquaculture. In this study, EHP spore germination was induced and demonstrated with a scanning electron microscope (SEM).

View Article and Find Full Text PDF

A novel vicinal diepoxide of alloaureothin was isolated from Streptomyces sp. NIIST-D31 strain along with three carboxamides, p-aminobenzoic acid and 1,6-dimethoxyphenazine. Exhaustive 2D NMR analysis and analysis of experimental, theoretical CD spectra aided in establishing the structure of compound 1.

View Article and Find Full Text PDF