This review explores the latest advancements in enhancing the biocompatibility and antibacterial properties of implantable structures, with a focus on titanium (Ti) and its alloys. Titanium implants, widely used in dental and orthopedic applications, demonstrate excellent mechanical strength and biocompatibility, yet face challenges such as peri-implantitis, a bacterial infection that can lead to implant failure. To address these issues, both passive and active surface modification strategies have been developed.
View Article and Find Full Text PDFThe dynamically developing field of implantology requires researchers to search for new materials and solutions. In this study, TiNbZr samples were investigated as an alternative for popular, but potentially hazardous TiAl6V4. Samples were etched, sandblasted, subjected to PEO, and covered in AgNP suspension.
View Article and Find Full Text PDFElectrospinning, a technique for creating fabric materials from polymer solutions, is widely used in various fields, including biomedicine. The unique properties of electrospun fibrous membranes, such as large surface area, compositional versatility, and customizable porous structure, make them ideal for advanced biomedical applications like tissue engineering and wound healing. By considering the high biocompatibility and well-known regenerative potential of polylactic acid (PLA) and chitosan (CH), as well as the versatile antibacterial effect of silver nanoparticles (AgNPs), this study explores the antibacterial efficacy, adhesive properties, and cytotoxicity of electrospun chitosan membranes with a unique nanofibrous structure and varying concentrations of AgNPs.
View Article and Find Full Text PDFMXenes are among the most diverse and prominent 2D materials. They are being explored in almost every field of science and technology, including biomedicine. In particular, they are being investigated for photothermal therapy, drug delivery, medical imaging, biosensing, tissue engineering, blood dialysis, and antibacterial coatings.
View Article and Find Full Text PDFThis study investigates the development and application of electrospun wound dressings based on polylactic acid (PLA) nanofibers, chitosan, and copper nanoparticles (CuNPs) for the treatment of purulent skin wounds. The materials were evaluated for their structural, antibacterial, and wound healing properties using an animal model. PLA/Ch-CuNPs demonstrated the most significant antibacterial activity against , , and , surpassing the other tested materials.
View Article and Find Full Text PDF