The point mutation N642H of the signal transducer and activator of transcription 5B (STAT5B) protein is associated with aggressive and drug-resistant forms of leukemia. This mutation is thought to promote cancer due to hyperactivation of STAT5B caused by increased stability of the active, parallel dimer state. However, the molecular mechanism leading to this stabilization is not well understood as there is currently no structure of the parallel dimer.
View Article and Find Full Text PDFModification of T-lymphocytes, which are capable of paracellular transmigration is a promising trend in modern personalized medicine. However, the delivery of required concentrations of functionalized T-cells to the target tissues remains a problem. We describe a novel method to functionalize T-cells with magnetic nanocapsules and target them with electromagnetic tweezers.
View Article and Find Full Text PDFTowards the improvement of the efficient study of drugs and contrast agents, the 3D microfluidic platforms are currently being actively developed for testing these substances and particles in vitro. Here, we have elaborated a microfluidic lymph node-on-chip (LNOC) as a tissue engineered model of a secondary tumor in lymph node (LN) formed due to the metastasis process. The developed chip has a collagen sponge with a 3D spheroid of 4T1 cells located inside, simulating secondary tumor in the lymphoid tissue.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2022
Small extracellular vesicles (sEVs) have attracted tremendous interest in recent years due to their exceptional properties for therapeutic and diagnostic applications. Although much research was focused on the quantity and content of sEVs, less efforts have been put into discovering the interaction between sEVs and cells. Here we engineered multicompartment particles, termed vesicosomes, by deposition of sEVs derived from MCF7, CHO cells and human plasma onto the surface of polyelectrolyte (PE)-coated silica (SiO) microparticles.
View Article and Find Full Text PDFNanomedicine has revolutionized the available treatment options during the last decade, but poor selectivity of targeted drug delivery and release is still poses a challenge. In this study, doxorubicin (DOX) and magnetite nanoparticles were encapsulated by freezing-induced loading, coated with polymeric shell bearing two bi-layers of polyarginine/dextran sulphate and finally modified with HER2-specific DARPin proteins. We demonstrated that the enhanced cellular uptake of these nanocarriers predominantly occurs by SKOV-3 (HER2+) cells, in comparison to CHO (HER2-) cells, together with the controlled DOX release using low intensity focused ultrasound (LIFU).
View Article and Find Full Text PDF