Transcriptome- and proteome-wide association studies (TWAS/PWAS) have proven successful in prioritizing genes and proteins whose genetically regulated expression modulates disease risk, but they ignore potential co-expression and interaction effects. To address this limitation, we introduce the co-expression-wide association study (COWAS) method, which can identify pairs of genes or proteins whose genetically regulated co-expression is associated with complex traits. COWAS first trains models to predict expression and co-expression conditional on genetic variation, and then tests for association between imputed co-expression and the trait of interest while also accounting for direct effects from each exposure.
View Article and Find Full Text PDFUnderstanding how genetic variation affects gene expression is essential for a complete picture of the functional pathways that give rise to complex traits. Although numerous studies have established that many genes are differentially expressed in distinct human tissues and cell types, no tools exist for identifying the genes whose expression is differentially regulated. Here we introduce DRAB (differential regulation analysis by bootstrapping), a gene-based method for testing whether patterns of genetic regulation are significantly different between tissues or other biological contexts.
View Article and Find Full Text PDFExcitons play a key role in the linear optical response of two-dimensional (2D) materials. However, their role in the nonlinear response to intense, nonresonant, low-frequency light is often overlooked as strong fields are expected to tear the electron-hole pair apart. Using high-harmonic generation as a spectroscopic tool, we theoretically study their formation and role in the nonlinear optical response.
View Article and Find Full Text PDFMendelian randomization (MR) utilizes genome-wide association study (GWAS) summary data to infer causal relationships between exposures and outcomes, offering a valuable tool for identifying disease risk factors. Multivariable MR (MVMR) estimates the direct effects of multiple exposures on an outcome. This study tackles the issue of highly correlated exposures commonly observed in metabolomic data, a situation where existing MVMR methods often face reduced statistical power due to multicollinearity.
View Article and Find Full Text PDF