Publications by authors named "M V Krivega"

Development of the gonads under complex androgen regulation is critical for germ cells specification. In this work we addressed the relationship between androgens and genomic integrity determining human fertility. We used different study groups: individuals with Differences of Sex Development (DSD), including Complete Androgen Insensitivity Syndrome (CAIS) due to mutated androgen receptor (AR), and men with idiopathic nonobstructive azoospermia.

View Article and Find Full Text PDF

The ability to transmit genetic information through generations depends on the preservation of genome integrity. Genetic abnormalities affect cell differentiation, causing tissue specification defects and cancer. We addressed genomic instability in individuals with Differences of Sex Development (DSD), characterized by gonadal dysgenesis, infertility, high susceptibility for different types of cancer, especially Germ Cell Tumors (GCT), and in men with testicular GCTs.

View Article and Find Full Text PDF

The mechanisms underlying pathologies in Down syndrome remain poorly understood. In this forum article we compare the cellular phenotypes of chromosome 21 trisomy with other trisomic cells. We argue that both effects of the extra chromosome 21 and the global consequences of chromosome gain must be considered to understand complex pathologies of Down syndrome.

View Article and Find Full Text PDF

Chromosome gains are detrimental for the development of the human embryo. As such, autosomal trisomies almost always result in spontaneous abortion, and the rare embryos surviving until live birth suffer from a plethora of pathological defects. There is no treatment currently available to ameliorate the consequences of trisomies, such as Down syndrome (trisomy of chromosome 21).

View Article and Find Full Text PDF

Gain of even a single chromosome leads to changes in human cell physiology and uniform perturbations of specific cellular processes, including downregulation of DNA replication pathway, upregulation of autophagy and lysosomal degradation, and constitutive activation of the type I interferon response. Little is known about the molecular mechanisms underlying these changes. We show that the constitutive nuclear localization of TFEB, a transcription factor that activates the expression of autophagy and lysosomal genes, is characteristic of human trisomic cells.

View Article and Find Full Text PDF