Publications by authors named "M V Kopanitsa"

A significant fraction of the popular inbred C57Bl/6J mice show structural and biochemical features of the congenital portosystemic shunt (PSS). How this hepatic abnormality affects physiological and behavioural parameters has not been explored in detail. Here, we confirmed the frequent occurrence of the PSS in C57Bl/6J mice by three different methods.

View Article and Find Full Text PDF

Amyloid-β pathology and neurofibrillary tangles lead to glial activation and neurodegeneration in Alzheimer's disease. In this study, we investigated the relationships between the levels of amyloid-β oligomers, amyloid-β plaques, glial activation and markers related to neurodegeneration in the triple mutation mouse line and in a knock-in line homozygous for the common human amyloid precursor protein ( mouse). The relationships between neuropathological features were characterized with immunohistochemistry and imaging mass cytometry.

View Article and Find Full Text PDF

Lipids play crucial roles in the susceptibility and brain cellular responses to Alzheimer's disease (AD) and are increasingly considered potential soluble biomarkers in cerebrospinal fluid (CSF) and plasma. To delineate the pathological correlations of distinct lipid species, we conducted a comprehensive characterization of both spatially localized and global differences in brain lipid composition in App mice with spatial and bulk mass spectrometry lipidomic profiling, using human amyloid-expressing (h-Aβ) and WT mouse brains controls. We observed age-dependent increases in lysophospholipids, bis(monoacylglycerol) phosphates, and phosphatidylglycerols around Aβ plaques in App mice.

View Article and Find Full Text PDF

Neuronal homeostasis prevents hyperactivity and hypoactivity. Age-related hyperactivity suggests homeostasis may be dysregulated in later life. However, plasticity mechanisms preventing age-related hyperactivity and their efficacy in later life are unclear.

View Article and Find Full Text PDF

The paucity of currently available therapies for glioblastoma multiforme requires novel approaches to the treatment of this brain tumour. Disrupting cyclic nucleotide-signalling through phosphodiesterase (PDE) inhibition may be a promising way of suppressing glioblastoma growth. Here, we examined the effects of 28 PDE inhibitors, covering all the major PDE classes, on the proliferation of the human U87MG, A172 and T98G glioblastoma cells.

View Article and Find Full Text PDF