Publications by authors named "M V Khrapova"

On mouse neuroblastoma (Neuro-2a) and human glioblastoma (U-87 MG) cell lines, we studied the effect of inducers and inhibitors of redox-sensitive signaling system of the antioxidant-responsive element Keap1/Nrf2/ARE on the main processes that determine nerve cell viability and vital activity (proliferative activity, apoptosis, autophagy, and activation of the Keap1/Nrf2/ARE system). Inhibitors of the Keap1/Nrf2/ARE system stimulate apoptosis more pronouncedly than inducers, have a weaker effect on autophagy, and do not change the nuclear to cytoplasmic Nrf2 ratio. In general, the revealed effects testify in favor of the potential effectiveness of stimulating the Keap1/Nrf2/ARE system for the prevention and adjuvant therapy of neurodegenerative diseases.

View Article and Find Full Text PDF

The development of means of the prevention and treatment of age-related neurodegenerative diseases, as well as geroprotectors, among other things, is based on the inflammatory and free radical theories of aging. In this context, we studied the effect of sodium monophenol 3-(3'-tert-butyl-4'-hydroxyphenyl)propyl thiosulfonate (TS-13) on the behavioral and locomotor activity of C57BL/6 mice in modeling Parkinson's disease by MPTP neurotoxin injection. TS-13 administration significantly improved orientation and exploratory activity and emotional response of the animals in the open field test, but did not affect the increase in anxiety caused by MPTP injection.

View Article and Find Full Text PDF

The redox-sensitive signaling system Keap1/Nrf2/ARE is a premier protective mechanism against oxidative stress that plays a key role in the pathogenesis and development of various diseases, including tuberculous granulomatous inflammation. We have previously reported that novel water-soluble phenolic antioxidant TS-13 (sodium 3-(4'-methoxyphenyl)propyl thiosulfonate) induces Keap1/Nrf2/ARE and attenuates inflammation. The aim of this study is the examination of the effect of TS-13 on tuberculous granulomatous inflammation.

View Article and Find Full Text PDF

ROS are important intracellular messengers; their ambiguous role in malignant processes was demonstrated in many studies. The effects of a synthetic phenolic antioxidant sodium 3-(3'-tert-butyl-4'-hydroxyphenyl)propyl thiosulfonate sodium (TS-13) on the tumor growth and oncolytic properties of doxorubicin were studied in the experimental model of Lewis lung carcinoma in mice. In mice receiving TS-13 with drinking water (100 mg/kg), suppression of tumor growth by 32.

View Article and Find Full Text PDF