Organic salts represent an ideal experimental playground for studying the interplay between magnetic and charge degrees of freedom, which has culminated in the discovery of several spin-liquid candidates such as κ-(ET)_{2}Cu_{2}(CN)_{3} (κ-Cu). Recent theoretical studies indicate the possibility of chiral spin liquids stabilized by ring exchange, but the parent states with chiral magnetic order have not been observed in this material family. In this Letter, we discuss the properties of the recently synthesized κ-(BETS)_{2}Mn[N(CN)_{2}]_{3} (κ-Mn).
View Article and Find Full Text PDFWe report on semiclassical angle-dependent magnetoresistance oscillations and the Shubnikov-de Haas effect in the electron-overdoped cuprate superconductor Nd(2-x)CexCuO4. Our data provide convincing evidence for magnetic breakdown in the system. This shows that a reconstructed multiply connected Fermi surface persists, at least at strong magnetic fields, up to the highest doping level of the superconducting regime.
View Article and Find Full Text PDFWe report on the direct probing of the Fermi surface in the bulk of the electron-doped superconductor Nd(2-x)Ce(x)CuO(4) at different doping levels by means of magnetoresistance quantum oscillations. Our data reveal a sharp qualitative change in the Fermi surface topology, due to translational symmetry breaking in the electronic system which occurs at a critical doping level significantly exceeding the optimal doping. This result implies that the (pi/a, pi/a) ordering, known to exist at low doping levels, survives up to the overdoped superconducting regime.
View Article and Find Full Text PDFCrystals of the bis(ethylenedithio)tetraselenafulvalene (BETS) radical cation salt with dicyanamidomanganate(II) anion, kappa-(BETS)2Mn[N(CN)2]3, were synthesized, which combine conducting and magnetic properties at ambient pressure and are superconducting (Tc approximately/= 5 K) at a moderate pressure of 0.3 kbar.
View Article and Find Full Text PDFWe present comparative studies of the orientation effect of a strong magnetic field on the interlayer resistance of alpha-(BEDT-TTF)2KHg(SCN)4 samples characterized by different crystal quality. We find striking differences in their behavior, which is attributed to the breakdown of the coherent charge transport across the layers in the lower quality sample. In the latter case, the nonoscillating magnetoresistance background is essentially a function of only the out-of-plane field component, in contradiction to the existing Fermi-liquid theories.
View Article and Find Full Text PDF