We demonstrate the use of a femtosecond frequency comb to coherently drive stimulated Raman transitions between terahertz-spaced atomic energy levels. More specifically, we address the 3d ^{2}D_{3/2} and 3d ^{2}D_{5/2} fine structure levels of a single trapped ^{40}Ca^{+} ion and spectroscopically resolve the transition frequency to be ν_{D}=1,819,599,021,534±8 Hz. The achieved accuracy is nearly a factor of five better than the previous best Raman spectroscopy, and is currently limited by the stability of our atomic clock reference.
View Article and Find Full Text PDFWe demonstrate a significant improvement in the performance of a fiber-based frequency comb when a GPS-disciplined Rb clock is replaced with an acetylene-stabilized laser as the frequency reference. We have developed a compact, maintenance-free acetylene-stabilized fiber laser with a sub-kHz short-term linewidth and an Allan deviation below 3×10 for integration times above 1 s. Switching the comb reference from the Rb clock to the acetylene-stabilized laser improves both comb tooth linewidth and Allan deviation by about two orders of magnitude.
View Article and Find Full Text PDFWe have produced laser-cooled crystals of 232Th3+ in a linear rf Paul trap. This is the first time that a multiply charged ion has been laser cooled. Our work opens an avenue for excitation of the nuclear transition in a trapped, cold 229Th3+ ion.
View Article and Find Full Text PDF