Peanut (Arachis hypogaea L.) is the fourth most cultivated oilseed in the world, but its cultivation is subject to fluctuations in water demand. Current studies of tolerance between cultivars and physiological mechanisms involved in plant recovery after drought are insufficient for selection of tolerant cultivars.
View Article and Find Full Text PDFBackground: Silicon (Si) is a multiple stress attenuator element in plants, however more research is needed to elucidate the actions in the plants defense system with low nutrition of manganese (Mn) for a prolonged period, and the attenuation mechanisms involved in the effects of Mn deficiency on energy cane with high fiber content. Thus, the objective of this study was to evaluate whether Si reduces the oxidative stress of the energy cane grown in low Mn in nutrient solution, to mitigate the effects of Mn deficiency, improving enzymatic and non-enzymatic defense, uptake of Mn the plant growth.
Methods: An experiment was carried out with pre-sprouted seedlings of Saccharum spontaneum L.
Manganese (Mn) is highly demanded by Poaceae, and its deficiency induces physiological and biochemical responses in plants. Silicon (Si), which is beneficial to plants under various stress conditions, may also play an important role in plants without stress. However, the physiological and nutritional mechanisms of Si to improve Mn nutrition in sugarcane and energy cane, in addition to mitigating deficiency stress, are still unclear.
View Article and Find Full Text PDFSalinity has become one of the major factors limiting agricultural production. In this regard, different cost-effective management strategies such as the use of plant growth-promoting bacteria (PGPB) as inoculants to alleviate salt-stress conditions and minimize plant productivity losses have been used in agricultural systems. The aim of this study was to characterize induced antioxidant responses in corn through inoculation with Azospirillum brasilense and examine the relationship between these responses and the acquired salt-stress tolerance.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2020
Field peas (Pisum sativum L.) are widely cultivated throughout the world as a cool season grain and forage crop. Boron (B) toxicity is caused by high B concentration in the soil or irrigation water, and is particularly problematic in medium or heavier textured soil types with moderate alkalinity and low annual rainfall.
View Article and Find Full Text PDF